Evidence for horizontal gene transfer from bacteroidetes bacteria to dinoflagellate minicircles.

نویسندگان

  • Krzysztof Moszczynski
  • Pawel Mackiewicz
  • Andrzej Bodyl
چکیده

Dinoflagellate protists harbor a characteristic peridinin-containing plastid that evolved from a red or haptophyte alga. In contrast to typical plastids that have ∼100-200 kb circular genomes, the dinoflagellate plastid genome is composed of minicircles that each encode 0-5 genes. It is commonly assumed that dinoflagellate minicircles are derived from a standard plastid genome through drastic reduction and fragmentation. However, we demonstrate that the ycf16 and ycf24 genes (encoded on the Ceratium AF490364 minicircle), as well as rpl28 and rpl33 (encoded on the Pyrocystis AF490367 minicircle), are related to sequences from Algoriphagus and/or Cytophaga bacteria belonging to the Bacteroidetes clade. Moreover, we identified a new open reading frame on the Pyrocystis minicircle encoding a SRP54 N domain, which is typical of FtsY proteins. Because neither of these minicircles share sequence similarity with any other dinoflagellate minicircles, and their genes resemble bacterial operons, we propose that these Ceratium and Pyrocystis minicircles resulted from a horizontal gene transfer (HGT) from a Bacteroidetes donor. Our findings are the first indication of HGT to dinoflagellate minicircles, highlighting yet another peculiar aspect of this plastid genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The case of horizontal gene transfer from bacteria to the peculiar dinoflagellate plastid genome

Organelle genomes lose their genes by transfer to host nuclear genomes, but only occasionally are enriched by foreign genes from other sources. In contrast to mitochondria, plastid genomes are especially resistant to such horizontal gene transfer (HGT), and thus every gene acquired in this way is notable. An exceptional case of HGT was recently recognized in the peculiar peridinin plastid genom...

متن کامل

The remarkable chloroplast genome of dinoflagellates.

Dinoflagellates are an economically and ecologically important eukaryotic algal group. The organization of their chloroplast genome appears to be radically different from that in plants and other algae. The gene content has been dramatically reduced in dinoflagellates, with the large-scale transfer of genes to the nucleus. Most of the remaining genes encode subunits of Photosystems I and II, th...

متن کامل

Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates

The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. F...

متن کامل

Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome

Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA e...

متن کامل

Environmental and Gut Bacteroidetes: The Food Connection

Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 2012